中國“天元”量子模擬器率先取得量子計算第二階段重要進展
軍工資源網(wǎng) 2024年07月11日中國科學技術(shù)大學潘建偉、陳宇翱、姚星燦、鄧友金等成功構(gòu)建了求解費米子哈伯德模型的超冷原子量子模擬器“天元”,以超越經(jīng)典計算機的模擬能力首次驗證了該體系中的反鐵磁相變,朝著獲得費米子哈伯德模型的低溫相圖、理解量子磁性在高溫超導機理中的作用邁出了重要的第一步。7月10日,相關研究成果在線發(fā)表在《自然》(Nature)上。
由于較高科學價值和潛在的經(jīng)濟效益,以高溫超導為代表的強關聯(lián)量子材料將推動未來科技的發(fā)展。然而,這些新型量子材料背后的物理機制尚不明確,難以實現(xiàn)有效可控的規(guī)?;苽浜蛻谩YM米子哈伯德模型是晶格中電子運動規(guī)律的最簡化模型,被認為是可能描述高溫超導材料的代表性模型之一,但研究面臨著挑戰(zhàn):一方面,該模型在二維和三維下沒有嚴格解析解;另一方面,計算復雜度非常高,即使是超級計算機也無法進行有效的數(shù)值模擬。
量子計算為求解若干經(jīng)典計算機難以勝任的計算難題提供了全新方案。國際學術(shù)界為量子計算的發(fā)展設定了三個階段。一是對特定問題的計算能力超越經(jīng)典超級計算機,實現(xiàn)“量子計算優(yōu)越性”。隨著美國谷歌公司“懸鈴木”以及中國科大“九章”系列、“祖沖之號”系列量子計算原型機的實現(xiàn),這一階段的目標已達到。二是實現(xiàn)專用量子模擬機以求解諸如費米子哈伯德模型這一類重要科學問題,這是當前的主要研究目標。三是在量子糾錯的輔助下實現(xiàn)通用容錯量子計算機。值得注意的是,理論研究表明,即使采用通用量子計算機也難以準確求解費米子哈伯德模型。因此,構(gòu)建可以求解該模型的量子模擬機,不僅是探究高溫超導機理的有效途徑,而且是量子計算研究的重大突破。
對于整個設想中的費米子哈伯德模型低溫相圖,理論上僅能夠明確無摻雜(即每個格點填充一個電子,又稱半滿)條件下系統(tǒng)的低溫狀態(tài)是反鐵磁態(tài)。然而,由于系統(tǒng)的復雜性,不僅反鐵磁態(tài)從未得以實驗驗證,而且摻雜條件下的系統(tǒng)狀態(tài)已無法通過經(jīng)典超級計算機進行準確數(shù)值模擬。因此,構(gòu)建量子模擬器驗證包括摻雜條件下的反鐵磁相變,是實現(xiàn)能夠求解費米子哈伯德模型的專用量子模擬機的第一步,也是獲得該模型低溫相圖的重要基礎。
光晶格中的超冷原子具有系統(tǒng)純凈、原子間相互作用強度、隧穿速率及摻雜濃度可精確調(diào)控等優(yōu)勢,是最有希望構(gòu)建專用量子模擬機以求解費米子哈伯德模型的體系之一。為了驗證反鐵磁相變,超冷原子量子模擬器必須滿足兩個關鍵條件:首先,需要建立空間強度分布均勻的光晶格系統(tǒng),確保費米子哈伯德模型的參數(shù)在大尺度上保持一致;其次,系統(tǒng)溫度必須顯著低于奈爾溫度(即反鐵磁相變溫度),這樣反鐵磁相才可能出現(xiàn)。然而,以往實驗中光晶格強度的非均勻性和費米原子制冷存在的困難,使得上述兩個關鍵條件無法得到滿足。因此,反鐵磁相變一直無法實現(xiàn)。
為了解決這些難題,該團隊在前期實現(xiàn)盒型光勢阱中的均勻費米超流的基礎上,進一步降低了盒型光勢阱的強度噪聲,并結(jié)合機器學習優(yōu)化技術(shù)實現(xiàn)了最低溫度的均勻費米簡并氣體制備,滿足了實現(xiàn)反鐵磁相變所需要的低溫。進一步,該團隊創(chuàng)造性地將盒型光勢阱和平頂光晶格技術(shù)相結(jié)合,實現(xiàn)了空間均勻的費米子哈伯德體系的絕熱制備。該體系包含大約80萬個格點,比目前主流實驗的幾十個格點規(guī)模提高了約4個數(shù)量級,且體系具有一致的哈密頓量參數(shù),溫度顯著低于奈爾溫度。在此基礎上,該團隊通過精確調(diào)控相互作用強度、溫度和摻雜濃度,直接觀察到反鐵磁相變的確鑿證據(jù)——自旋結(jié)構(gòu)因子在相變點附近呈現(xiàn)冪律的臨界發(fā)散現(xiàn)象,從而首次驗證了費米子哈伯德模型包括摻雜條件下的反鐵磁相變。
該工作推進了科學家對費米子哈伯德模型的理解,為進一步求解該模型、獲取其低溫相圖奠定了基礎,首次展現(xiàn)了量子模擬在解決經(jīng)典計算機無法勝任的重要科學問題上的巨大優(yōu)勢?!蹲匀弧冯s志審稿人對這一成果給予了高度評價,稱該工作“有望成為現(xiàn)代科技的里程碑和重大突破”,“標志著該領域向前邁出了重要的一步”,“是實驗的杰作,是期待已久的成就”。
研究工作得到國家自然科學基金委員會、科學技術(shù)部、中國科學院、上海市、安徽省等的支持。
動畫:量子模擬實驗過程示意
“天元”量子模擬器示意。紅色和藍色的小球分別代表自旋相反的原子,在三維空間交錯排列,形成反鐵磁晶體。原子被光晶格囚禁在玻璃真空腔中。